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We present a method for detecting the dimension of a dynamical system encom- 
passing simultaneously two distinct discrete time series. This method is an 
extension of the technique introduced by Grassberger and Procaccia for single 
time series and allows to evaluate the common correlation dimension of the 
chaotic attractor. The method is applied to some mathematical models and to 
multiple single-neuron spike trains. 
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1. I N T R O D U C T I O N  

The problem of the detection and characterization of chaotic attractors in 
discrete time series has been widely investigated in recent years. Dynamical 
system theory provides constructive algorithms to discern deterministic 
or stochastic behaviour, ~s'5) and allows to measure the size of the 
attractor.~4, ~2, ~7) Discrete time series may be derived from mappings, dif- 
ferential equations or experimental data. We will consider the conservative 
2D-standard map and a 4D-mapping derived from the coupling of dis- 
sipative 2D-H~non mappings. Moreover we will examine a neurobiological 
application, where the time series is formed by the occurrences of spikes 
during electrophysiological recordings ("spike trains"). 

Nowadays the most reliable method to determine the random or 
deterministic character of a time series is provided by ref. [8]  (hereafter 
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GP-algorithm). This method has been widely applied to mathematical 
models ts) as well as to biological data. t2'~'~3'3) In ref. [3] we analyzed a 
set of spike-train samples using the GP-algorithm and found several low- 
dimensional chaotic attractors. In this paper we extend these results, 
considering the problem of finding a deterministic structure associated 
simultaneously to two time series (see also ref. [ 10 ]), derived from a single 
observable (taking for example distinct initial conditions) or from different 
observables measured simultaneously. To this end, we develop an extension 
of the GP-algorithm and we apply it to the standard map, the 4-D H6non 
mapping and to neuronal data. 

The "double series" method provides good results when two small 
datasets are available, instead of a single (long) time series. This situation 
often applies when dealing with experimental data. 

2. SINGLE AND MULTIPLE T IME SERIES ANALYSIS 

We briefly recall the GP-algorithm as follows. Let x~, ..., x r  (where K 
is the total number of points) be a given time series; we define delay coor- 
dinates { y~ .... , YN} (N-- K--  d + 1 ) in a d-dimensional embedding space, 
setting yj = ( xj, ..., xj + d-  ~ ), J = 1, ..., N. For a given r > 0, we define the 
correlation integral as 

1 N N 

CN, a(r)=---~ Z E O(r-ly,-yjla), (C) 
j----I i - - l , i # j  

where O is the Heaviside function and ['[d denotes the Euclidean norm 
in R d. The correlation dimension v is related to the above function by 

dlog CN.d(r) 
V -- lim lim (1) 

r--O N-- oo dlog r 

for d sufficiently large. Therefore the correlation dimension corresponds to 
the slope of the curves log CN. d(r) VS. log r, whenever its value becomes 
nearly constant as the embedding dimension is varied. In practical applica- 
tions, the slope of the above curves must be evaluated in a meaningful 
range of values of the radius, say (r 0, r l), referred to as the scaling region: 
below r0 the curves are distorted due to poor  statistics, while above r~ the 
curves tend to flatten since the attractor has finite size. Particular care must 
be devoted to the selection of the scaling region, whose amplitude should 
be sufficiently large. ~6) 

We assume that two series, say {X~- l,} and {x '2)}j with KI and K2 
points respectively, are distinct and independent realizations of the same 
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observable in a given system or that they represent different observables 
measured simultaneously. The GP-algorithm can be extended replacing the 
definition of the correlation integral (C) as follows. Let {y)~'}, {y)2,} be 
the delay coordinates associated to {x) l~} { ,2, , x )  } in a d-dimensional 
embedding space. Let { )~i} be the sequence defined by ~ i=  Yt~i (1 ~< i ~< N~) 

t2~ (N~ + 1 ~< i ~< N~ + N2), where N~ = K~ - d + 1, N2 = K2 - and y~= Yi_N! 
d +  2. We define the correlation integral associated to {x ~)}j , {x) }ast2) 

1 2 N~ N~+N2 
= E E E O(r--lY~k'--~Pg]) �9 (C,a) 

CNl+Nz'd(r) (Nl-'~-N2) 2 k=l j = l  i . j , i=l  

Therefore for any point of each series, one counts the numbers of points 
(from both series) falling inside a hypersphere of radius r around the center. 
The above formula can be easily extended to an arbitrary number of time 
series. We remark that (C~2) reduces to (C) as N~ = 0  o r  N 2 =0. More 
precisely, the above definition is equivalent to split a discrete series of 
length N into two series of lengths N~ and N2. However when the attractor 
(if it does exist) is curly shaped (e.g., successive components of the discrete 
series are far apart), the double trajectory method might become more 
efficient than the original GP-algorithm, whenever the two series are close 
to each other. 

In order to test the validity of this method we consider two mathe- 
matical models. The first one is the standard mapping, described by the set 
of equations 

yj+ ~ = yj + e sin xj xje R/21r Z 
(SM2) 

X j+ l=x j+Yj+ l  yj~R,  t ~ R + .  

The global breakdown threshold for transition to chaos was estimated in 
ref. [9] as t ~- 0.9716. Therefore, in order to select (strongly) chaotic trajec- 
tories we fix t =  1.2 and we choose initial conditions which do not 
correspond to librational curves nor to periodic orbits. We define the time 
series as the iterates {xs} of (SM2). The application of the single and mul- 
tiple time series-methods shows that the embedding and correlation dimen- 
sions can be computed more efficiently using the double series method. In 
fact, with a single time series of 6000 points we find that the slopes of the 
correlation integrals are convergent starting from d= 3 (see Fig. la), while 
we should clearly find d= 2. Much longer time series should be considered 
to get the fight result. On the contrary, taking two time series, with 
KI =K2= 1000, we are able to confirm that both trajectories lie in a 
2-dimensional embedding space with a correlation dimension about equal 
to v = 2 (Fig. l b). This last value is consistent with the theoretical value 
one expects from the ergodic behaviour of chaotic trajectories. 
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Fig. 1. (a) Two-dimensional standard-map (SM2) with e= 1.2, initial conditions: (x=0, 
y=0.61877). The correlation integral is plotted for d= 1 ..... 8; K=6000. (b) Double time 
series of SM2 with e= 1.2, initial conditions: (Xo = 0, Y0 =0.61877) and (x~ =0, Yl =0.62355); 
K = 1000. 

We test ou r  m e t h o d  also on  a 4 D - m a p p i n g ,  der ived f rom the coupl ing  of 

two 2D-H6non ' s  maps.  M o r e  precisely, we cons t ruc t  a new m a p p i n g  

defined by 

f X j + l =  - -ax~ + yj  + 1 
Y j  + 1 = bxj  + hzj 
zj+ ~ = - a ' z }  + t j+  l 

tj + l = - b' zj + hxj  

( H E 4 )  
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where xj, yj, zj, tj ~ R, a, b, a', b', h are real parameters (that we fix equal 
to a = 1.4, a ' =  1.6, b = 0.3, b ' =  0.6, h = 0.03). Notice that for h = 0, (HE4) 
reduces to two uncoupled H~non's mappings. The single time series 
method provides an embedding space of dimension d =  3, taking 1000, 
2000 or 4000 points. On the contrary, with an overall number of 2000 
points (computed on iterations of coordinates x and z), one obtains that 
the two trajectories are embedded in a 4-dimensional space and there exists 
an attractor of dimension v ~-2.03. The effect of the (weak) coupling is 
observed using both x and z in the double series method, rather than 
considering iterations of a single coordinate. We found similar results in 
(SM2) and (HE4) for different values of the parameters. 

As a further application, we compute the correlation dimension for 
neuronal pairs, where time series correspond to the "spike train" sequences 
formed by the occurrences of spikes during simultaneous extracellular 
recording of the activity of two single units. More specifically we want to 
show that the experimental time series-spike trains-correspond to different 
observables measured simultaneously in the same system. 

The data are derived from experiments conducted in 5 anesthetized 
young adult Long-Evans rats in the substantia nigra pars reticulata 
(13 spike trains) or in the auditory thalamus (14 spike trains). ~5' 16) The 
recordings were performed during spontaneous activity and acoustically 
evoked stimulation with an accuracy of 1 m s .  ~14) 

Low-dimensional deterministic dynamics with an embedding dimen- 
sion between 2 and 6 and a correlation dimension between 0.14 and 3.3, 
was observed in 7 over 27 single spike trains, containing between 800 
and 5200 points, t3~ In this paper we implement the double series method, 
taking all possible combinations (n = 68) of pairs within the same groups 
of cells provided by the 27 spike trains analyzed in ref. [3]. We have 
found evidence of deterministic behaviour for 10 pairs with an embedding 
dimension ranging from 3 to 6 and a correlation dimension between 0.27 
and 3.7. In most cases (7/10) the deterministic coupled dynamics was 
observed when one point process of the pair was also characterized by a 
deterministic structure. In two cases the generating processes were not 
deterministic and only one significant coupled dynamics was characterized 
by a pair of generating processes. 

It is interesting to note that only one significant case was observed in 
substantia nigra pars reticulata. The majority of significant dynamics for 
neuronal pairs was observed in a cell group recorded in the auditory 
thalamus: 5 cases were found under external stimulus and 4 cases under 
spontaneous activity. As an example, we show in Fig. 2 the analysis of a 
triplet of cells during binaural white noise stimulation. Firstly, the response 
pattern to the stimulus, depicted by the peri-stimulus time histogram, is 

822/89/3-4-26 
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Fig. 2. Single unit activity of a triplet of cells in the auditory thalamus during evoked activity. 
Row and column numbers indicate the cell label. The number of points in the time series and the 
average firing rate (spikes/s) for the cells are the following: cell 1 (3270, 8.2); cell 2 (3178, 7.9); 
cell 3 (2655, 6.6). (a) Time domain analysis. The panels on the diagonal correspond to the peri- 
stimulus time histograms with time (ms) vs. instantaneous firing rate (spikes/s) scaled as in ref. 
[ 1 ]. The remaining panels refer to the crosscorrelograms. The ordinate corresponds to the 
instantaneous firing rate of the follower cell (column number) at variable delays before (negative 
times on the abscissa, up to - 1 0 0  ms) and after (positive times, up to 100 ms)_the firing of the 
trigger cell (row number). Curves were smoothed using a Gaussian convolution with a bin size 
equal to 2.5 ms. Broken lines indicate the upper 99% confidence limit. (b) Dynamical system 
analysis. In case of significant deterministic dynamics, the scaling region is marked by a thick line 
on the abscissa. The curves which refer to one cell (single time series) form the panels on the 
diagonal. The remaining curves refer to two spike trains recorded simultaneously. 
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different for each cell (Fig. 2a). All cells were characterized by a transient 
onset excitatory response. In addition, at the offset of the stimulus the 
activity of cell 3 was inhibited, whereas cell 4 exhibited an excitatory 
response (Fig. 2a). Cross-correlograms tT) between all pairs (upper 
triangular part of Fig. 2a) show a peak near time zero, thus suggesting that 
the spike trains are synchronous. On the opposite, only the dynamics of 
pairs (1; 4) and (3; 4) was deterministic (Fig. 2b). This suggests that 
coupling of pair (1; 3) is independent from the activity of cell #4. 

3. DISCUSSION 

An alternative method for the detection of a deterministic structure in 
discrete time series has been proposed. The technique is based on the 
analysis of the dynamical properties associated simultaneously to two time 
series, obtained either taking distinct initial conditions of the same observ- 
able or different observables measured at the same time in the same system. 
We have investigated the existence of dynamics associated to two time 
series in mathematical models and biological applications. 

The advantage of using the double series method has been confirmed 
by the applications on the 2D-conservative standard map (SM2) and on 
the dissipative H6non's like 4D-mapping (HE4). The application of this 
method to time series provided by spike trains is interesting for several 
reasons. The detection of a deterministic dynamics necessarily requires 
the stability of the generating processes over a relatively long period of 
time and the double series method may provide useful results over a 
limited recording time. In addition, the application of dynamical systems 
methods to spike train interactions could be extended to a larger number 
of simultaneoulsy recorded spike trains and offers as a complementary 
approach toward deciphering the neural code. 
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